The contractile apparatus and mechanical properties of airway smooth muscle.

نویسندگان

  • S J Gunst
  • D D Tang
چکیده

The functional properties of airway smooth muscle are fundamental to the properties of the airways in vivo. However, many of the distinctive characteristics of smooth muscle are not easily accounted for on the basis of molecular models developed to account for the properties of striated muscles. The specialized ultrastructural features and regulatory mechanisms present in smooth muscle are likely to form the basis for many of its characteristic properties. The molecular organization and structure of the contractile apparatus in smooth muscle is consistent with a model of force generation based on the relative sliding of adjacent actin and myosin filaments. In airway smooth muscle, actomyosin activation is initiated by the phosphorylation of the 20 kDa light chain of myosin; but there is conflicting evidence regarding the role of myosin light chain phosphorylation in tension maintenance. Tension generated by the contractile filaments is transmitted throughout the cell via a network of actin filaments anchored at dense plaques at the cell membrane, where force is transmitted to the extracellular matrix via transmembrane integrins. Proteins bound to actin and/or localized to actin filament anchorage sites may participate in regulating the shape of the smooth muscle cell and the organization of its contractile filament system. These proteins may also participate in signalling pathways that regulate the crossbridge activation and other functions of the actin cytoskeleton. The length-dependence of active force and the mechanical plasticity of airway smooth muscle may play an important role in determining airway responsiveness during lung volume changes in vivo. The molecular basis for the length-dependence of tension in smooth muscle differs from that in skeletal muscle, and may involve mechano-transduction mechanisms that modulate contractile filament activation and cytoskeletal organization in response to changes in muscle length. The reorganization of contractile filaments may also underlie the plasticity of the mechanical response of airway smooth muscle. Changes in the structural organization and signalling pathways of airway smooth muscle cells resulting form alterations in mechanical forces in the lung may be important factors in the development of pathophysiological conditions of chronic airway hyperresponsiveness.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preventive effects of ipratropium and salbutamol against insulin induced tracheal smooth muscle contraction in guinea pig model

Inhalational insulin was withdrawn from the market due to its potential to produce airway hyper-reactivity and bronchoconstriction. So the present study was designed to explore the acute effects of insulin on airway reactivity of guinea pigs and protective effects of salbutamol and ipratropium against insulin induced airway hyper-responsiveness on isolated tracheal smooth muscle of guinea pig. ...

متن کامل

Mathematical description of geometric and kinematic aspects of smooth muscle plasticity and some related morphometrics.

Despite considerable investigation, the mechanisms underlying the functional properties of smooth muscle are poorly understood. This can be attributed, at least in part, to a lack of knowledge about the structure and organization of the contractile apparatus inside the muscle cell. Recent observations of the plasticity of smooth muscle and of morphometry of the cell have provided enough informa...

متن کامل

Rheology of airway smooth muscle cells is associated with cytoskeletal contractile stress.

Recently reported data from mechanical measurements of cultured airway smooth muscle cells show that stiffness of the cytoskeletal matrix is determined by the extent of static contractile stress borne by the cytoskeleton (Wang N, Tolić-Nørrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, and Stamenović D. Am J Physiol Cell Physiol 282, C606-C616, 2002). On the other hand, rheological ...

متن کامل

Effect of the cytoskeletal prestress on the mechanical impedance of cultured airway smooth muscle cells.

We investigated the effect of the cytoskeletal prestress (P) on the elastic and frictional properties of cultured human airway smooth muscle cells during oscillatory loading; P is preexisting tensile stress in the actin cytoskeleton generated by the cell contractile apparatus. We oscillated (0.1 Hz, 6 Pa peak to peak) small ferromagnetic beads bound to integrin receptors and computed the storag...

متن کامل

Mechanisms for the mechanical response of airway smooth muscle to length oscillation.

Airway smooth muscle tone in vitro is profoundly affected by oscillations in muscle length, suggesting that the effects of lung volume changes on airway tone result from direct effects of stretch on the airway smooth muscle. We analyzed the effect of length oscillation on active force and length-force hysteresis in canine tracheal smooth muscle at different oscillation rates and amplitudes duri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The European respiratory journal

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2000